Generalized functions - HW 3

March 7, 2016

Question 1

a. Assume first that $g(x) \equiv 1$. We will prove the claim by induction on k. The case $k=0$ is immediate. Denote $I=\left\{v_{1}, \ldots, v_{k}\right\}$ and $I^{\prime}=I \backslash\left\{v_{k}\right\}$. We note that by the chain rule

$$
\left(\frac{\partial^{k}}{\partial_{v_{I}}} \tilde{f}\right)(0)=\left(\frac{\partial^{k-1}}{\partial_{v_{I^{\prime}}}} \frac{\partial}{\partial_{v_{k}}} f \circ \varphi\right)(0)=\left(\frac{\partial^{k-1}}{\partial_{v_{I^{\prime}}}} \frac{\partial}{\partial_{v_{k}}} f \circ \varphi\right)(0)=\left(\frac{\partial^{k-1}}{\partial_{v_{I^{\prime}}}}\left\langle\nabla f, \frac{\partial \varphi}{\partial_{v_{k}}}\right\rangle\right)(0)
$$

But now all first $k-1$ derivatives of $\left\langle\nabla f, \frac{\partial \varphi}{\partial v_{k}}\right\rangle$ must vanish at 0 thus by the induction hypothesis

$$
\begin{equation*}
\left(\frac{\partial^{k-1}}{\partial_{v_{I^{\prime}}}}\left\langle\nabla f, \frac{\partial \varphi}{\partial_{v_{k}}}\right\rangle\right)(0)=\left(\frac{\partial^{k-1}}{\partial D \varphi_{v_{I^{\prime}}}}\left\langle\nabla f, \frac{\partial \varphi}{\partial_{v_{k}}}\right\rangle\right)(0)=\left(\frac{\partial^{k-1}}{\partial D \varphi_{v_{I^{\prime}}}} \frac{\partial}{\partial D \varphi_{v_{k}}} f\right) \tag{0}
\end{equation*}
$$

As desired.
For general g we note that for every multi index $J,|J| \leq k$ we have that $\frac{\partial^{|J|}}{\partial_{v_{J}}} f \circ \varphi(0)=0$. We may now combine this fact with the generalized Leibniz law to obtain

$$
\left(\frac{\partial^{k}}{\partial_{v_{I}}} \tilde{f}\right)(0)=\sum_{J \subset I}\binom{k}{|J|} \frac{\partial^{|J|}}{\partial_{v_{J}}} f \circ \varphi(0) \cdot \frac{\partial^{k-|J|}}{\partial_{v_{I \backslash J}}} g(0)=\frac{\partial^{k}}{\partial_{v_{I}}} f \circ \varphi(0) \cdot g(0)
$$

Combining both parts concludes the proof.
b. Consider $f(x)=e^{x}$ and $\varphi(x)=x^{3}+x$. Clearly $f^{\prime}(0) \neq 0$ and we have that

$$
\left(\frac{\partial^{2}}{\partial_{x}^{2}} f \circ \varphi\right)(0)=\left[e^{x^{3}+x}\right]^{\prime \prime}(0)=\left[e^{x^{3}+x}\left(9 x^{4}+6 x^{2}+6 x+1\right)\right](0)=1
$$

while
$\frac{\partial^{2}}{\partial^{2} D \varphi_{x}} f(0)=\frac{\partial}{\partial D \varphi_{x}}\left(f^{\prime} \cdot \varphi^{\prime}\right)(0)=\frac{\partial}{\partial D \varphi_{x}}\left(e^{x}\left(3 x^{2}+1\right)\right)(0)=\left(e^{x}\left(3 x^{2}+1\right)\right)^{\prime}\left(3 x^{2}+1\right)(0) \neq 1$

Question 2

If $\varphi^{*}: C^{\infty}(Y) \rightarrow C^{\infty}(X)$ is defined as $\varphi^{*}(f)=f \circ \varphi$, then for we will show that $\operatorname{supp}\left(\varphi^{*} f\right) \subset \varphi^{-1} \operatorname{supp}(f)$. Indeed let $x \in \operatorname{supp}\left(\varphi^{*} f\right)$, then $f(\varphi(x)) \neq 0$ which implies $\phi(x) \in \operatorname{supp}(f)$ or $x \in \varphi^{-1} \operatorname{supp}(f)$. It may be worthwhile to notice that this works only when x is in the interior of $\operatorname{supp}\left(\varphi^{*} f\right)$ but extending it to the boundary is immediate.

Now, let $f \in C_{c}^{\infty}(Y)$ then $\operatorname{supp}(f)$ is compact and for proper φ so is $\varphi^{-1} \operatorname{supp}(f)$. Thus, $\operatorname{supp}\left(\varphi^{*} f\right)$ is compact as well as a closed subset of $\varphi^{-1} \operatorname{supp}(f)$. And $\varphi^{*}(f) \in C_{c}^{\infty}(X)$.

Question 3

a. Let $\bar{g} \in \mu_{c}^{\infty}(X)$ we will show that $\varphi_{*}(\bar{g}) \in \mu_{c}^{\infty}(Y)$. The fact that $\varphi_{*}(\bar{g})$ is compactly supported is implied by the next item. Thus we will contend ourselves with showing that it is smooth. Smoothness is a local property, and for every $y \in Y$ we can then find a neighborhood V such that $\left.\varphi\right|_{\varphi^{-1}(V)}$ is a projection from F^{n+k} to F^{n}. On this neighborhood we may write \bar{g} as $g \cdot d \lambda$ where λ denotes the Haar measure. It is now the case that $\varphi_{*}(\bar{g})$ is defined by integration along the fibers of φ, thus if $d x, d y$ are the respective Haar measures on F^{k} and F^{n}

$$
\varphi_{*}(\bar{g})=\left(\int_{F^{k}} g(x, y) d x\right) d y
$$

By denoting $h(y):=\int_{F^{n}} g(x, y) d x$ we may write $\varphi_{*}(\bar{g})=h \cdot d y \in \mu_{c}^{\infty}\left(F^{n}\right)$ as promised.
b. Let $\xi \in \operatorname{Dist}_{c}(X)$ such that $\operatorname{supp}(\xi)=K$. For $f \in C_{c}^{\infty}(Y)$ by writing

$$
\left\langle\varphi_{*}(\xi), f\right\rangle=\langle\xi, f \circ \phi\rangle
$$

We may see that $\varphi_{*}(\xi)$ must be supported on $\varphi(K)$. Since the continuous image of a compact set must be compact the claim follows. (Hope this is not utter nonsense)

Question 4

We will show that for every $\bar{g} \in \mu_{c}^{\infty}(X),\left\langle\varphi^{*}(f), \bar{g}\right\rangle=\langle f \circ \varphi, \bar{g}\rangle$. To be more specific, for every $x \in X$ we will show that there exists a neighborhood in which the above equality holds, since the measures form a sheaf, the claim will follow.

Let $x \in X$, and let V be a neighborhood of y such that $V \simeq F^{n+k}$ and φ acts as a projection from V (this is possible by φ being a submersion). Thus, we may assume WLOG that $\varphi\left(x_{1}, \ldots, x_{n}, \ldots, x_{n+k}\right)=\left(x_{1}, \ldots, x_{n}\right)$. But now, by definition, $\left\langle\varphi^{*}(f), \bar{g}\right\rangle=\left\langle f, \varphi_{*}(\bar{g})\right\rangle$ where $\varphi_{*}(g)$ is given by integration along the fibers of φ and \bar{g} can be written as $g \cdot d \lambda$, where λ is the Haar measure on F. This the amounts to

$$
\varphi_{*}(\bar{g})(y)=\int_{F^{k}} g(y, x) d x, \quad x \in F^{k}, y \in F^{n}
$$

and, finally, by using Fubini's theorem

$$
\begin{aligned}
\left\langle\varphi^{*}(f), \bar{g}\right\rangle & =\int_{F^{n}} f(y)\left(\int_{F^{k}} g(x, y) d x\right) d y \\
& =\int_{F^{k}} \int_{F^{n}} g(y, x) f(y) d y d x=\int_{F^{k}} \int_{F^{n}} g(y, x) f \circ \varphi(y, x) d y d x \\
& =\langle f \circ \varphi, \bar{g}\rangle
\end{aligned}
$$

Which concludes the proof.

Question 5

We will first show that every $\chi \in \mathbb{R}^{\vee}$ is of the form $\chi(x)=e^{i s x}$ for some $t \in \mathbb{R}$. Indeed, let χ be a non-trivial character. Since χ is a continuous homomorphism its forms a subgroup of the circle which contains an entire interval. In which case it is easy to verify that χ is unto. The isomorphism theorem then shows that χ must have a non-trivial kernel. Let $0 \neq T \in \operatorname{ker}(\chi)$, so for every $x, \chi(x+T)=\chi(x) \chi(T)=\chi(x)$, and χ is periodic.

As a non constant function χ has a smallest period, denoted as T^{\prime}. The considerations given above display that for every $x \in\left(0, T^{\prime}\right), \chi(x) \neq 0$. In particular, there exists $n \in \mathbb{N}$ such that for $x \in\left(0, \frac{1}{2^{n}}\right)$, the imaginary part of $\chi(x)$ has constant sign. WLOG the sign is positive (otherwise, we transfer to χ^{-1}).

Let s be minimal such that $\chi\left(\frac{1}{2^{n}}\right)=e^{i s}$. Now, for every $k \in \mathbb{N}, \chi\left(\frac{1}{2^{n^{k}}}\right)$ must equal $e^{i \frac{s}{2^{k}}}$. And for every $j \leq 2^{k}, \chi\left(\frac{j}{2^{n^{k}}}\right)=e^{i \frac{s j}{2^{k}}}$. Since $\left\{\frac{j}{2^{n} 2^{k}}\right\}$ is dense in $\left[0, \frac{1}{2^{n}}\right], \chi$ must equal $e^{i s 2^{n}}$ there. By rotational invariance, $\chi(x)=e^{i s 2^{n} x}$ everywhere.

But now, in the compact open topology a sequence f_{n} converges to a function f if and only if f_{n} converges uniformly on every compact subset. It is routine to check that a sequence $e^{i t_{n} x}$ will converge to a function $e^{i t x}$ uniformly on every compact subset if and only if $t_{n} \rightarrow t$. Thus the topology on \mathbb{R}^{\vee} is equivalent to the topology on \mathbb{R} and $\mathbb{R} \approx \mathbb{R}^{\vee}$

